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Lattice-Based Crypto

Lattice problems provides a strong fundation for Post-Quantum Crypto

Worst-case to average-case reduction [Ajtai, 1999, Regev, 2009]

Worst-case Approx-SVP ≥
{

SIS (Short Intreger Solution)
LWE (Learning With Error)

How hard is Approx-SVP ? Depends on the Approximation factor α.
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Lattices over Rings (Ideals, Modules)

Generic lattices are cumbersome! Key-size = Õ(n2).

NTRU Cryptosystems [Hoffstein et al., 1998, Hoffstein et al., 2003]

Use the convolution ring R = R[X ]/(X p − 1), and module-lattices:

Lh = {(x , y) ∈ R2, hx + y ≡ 0 mod q}.

Same lattice dimension, Key-Size = Õ(n). Later came variants with
worst-case fundations:

wc-to-ac reduction [Micciancio, 2007, Lyubashevsky et al., 2013]

Worst-case Approx-Ideal-SVP ≥
{

Ring-SIS
Ring-LWE

Applicable for cyclotomic rings R = Z[ωm] (ωm a primitive m-th root of unity).

Denote n = degR. In our cyclotomic cases: n = φ(m) ∼ m.
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Is Ideal-SVP as hard as general SVP ?

Are there other approach than lattice reduction (LLL,BKZ) ?
An algebraic approach was sketched in [Campbell et al., 2014]:

The Principal Ideal Problem (PIP)

Given a principal ideal h, recover a generator h s.t. hR = h.

Solvable in quantum poly-time [Biasse and Song, 2016].

The Short Generator Problem (SGP)

Given a generator h, recover another short generator g s.t. gR = hR.

Also solvable in classical poly-time [Cramer et al., 2016] for
m = pk ,R = Z[ωm], α = exp(Õ(

√
n)).
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Are Ideal-SVP and Ring-LWE broken ?!

Not quite yet ! 3 serious obstacle remains:

(i) Restricted to principal ideals.

(ii) The approximation factor in too large to affect Crypto.

(iii) Ring-LWE ≥ Ideal-SVP, but equivalence is not known.

Approaches ?

(i) Solving the Close Principal Multiple problem (CPM) [This work !]

(ii) Considering many CPM solutions [Plausible]

(iii) Generalization of LLL to non-euclidean rings [Seems tough]
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Our result: Ideal-SVP in poly-time for large α

This work: CPM via Stickelberger Short Class Relation

⇒ Ideal-SVP solvable in Quantum poly-time, for

R = Z[ωm], α = exp(Õ(
√
n)).

Better tradeoffs

C
ry

p
to

α
poly(n) eΘ̃(

√
n) eΘ̃(n)

Time

poly(n)

eΘ̃(
√
n)

eΘ̃(n)
BKZ

This work

Impact and limitations

I No schemes broken

I Hardness gap between
SVP and Ideal-SVP

I New cryptanalytic tools

⇒ start favoring weaker
assumptions ?
e.g. Module-LWE
[Langlois and Stehlé, 2015]
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Ideals and Principal Ideals

Cyclotomic number field: K (= Q(ωm)), ring of integer OK (= Z[ωm]).

Definition (Ideals)

I An integral ideal is a subset h ⊂ OK closed under addition, and by
multiplication by elements of OK ,

I A (fractional) ideal is a subset f ⊂ K of the form f = 1
x h, where

x ∈ Z,

I A principal ideal is an ideal f of the form f = gOK for some g ∈ K .

In particular, ideals are lattices.

We denote FK the set of fractional ideal,
and PK the set of principal ideals.
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Class Group

Ideals can be multiplied, and remain ideals:

ab =

{∑
finite

aibi , ai ∈ a, bi ∈ b

}
.

The product of two principal ideals remains principal:

(aOK )(bOK ) = (ab)OK .

FK form an abelian group1, PK is a subgroup of it.

Definition (Class Group)

Their quotient form the class group ClK = FK/PK .
The class of a ideal a ∈ FK is denoted [a] ∈ ClK .

An ideal a is principal iff [a] = [OK ].

1with neutral element OK
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From CPM to Ideal-SVP

Definition (The Close Principal Multiple problem)

I Given an ideal a, and an factor F

I Find a small integral ideal b such that [ab] = [OK ] and Nb ≤ F

Note: Smallness with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).

I Solve CPM, and apply the previous results (PIP-SGP) to ab
I This will give a generator g of ab ⊂ a (so g ∈ a) of length

L = N(ab)1/n · exp(Õ(
√
n))

I This Ideal-SVP solution has an approx factor of

α ≈ L/N(a) = F 1/n · exp(Õ(
√
n))

CPM with F = exp(Õ(n3/2)) ⇒ Ideal-SVP with α = exp(Õ(
√
n))
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√
n))
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Factor Basis, Class-Group Discrete-Log

Choose a factor basis B of integral ideals and search b of the form:

b =
∏
p∈B

pep .

Theorem (Quantum Cl-DL, Corollary of [Biasse and Song, 2016])

Assume B generates the class-group. Given a and B, one can find in
quantum polynomial time a vector ~e ∈ ZB such that:∏

p∈B

[
pep
]

=
[
a−1
]
.

This finds a b such that [ab] = [OK ], yet:

I b may not be integral (negative exponents, yet easy to solve)

I Nb ≈ exp(‖~e‖1) may be huge (unbounded ~e, want ‖~e‖1 = Õ(n3/2)).
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Navigating the Class-Group

Cayley-Graph(G ,A):

I A node for any element g ∈ G

I An arrow g
a−→ ga for any g ∈ G , a ∈ A

Figure: Cayley-Graph((Z/5Z,+),{1,2})

�?

Rephrased Goal for CPM

Find a short path from [a] to [OK ] in Cayley-Graph(Cl,B).

I Using a few well chosen ideals in B, Cayley-Graph(Cl,B) is an
expander Graph [Jetchev and Wesolowski, 2015]: very short path exists.

I Finding such short path generically too costly: |Cl| > exp(n)
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A lattice problem

Cl is abelian and finite, so Cl = ZB/Λ for some lattice Λ:

Λ =
{
~e ∈ ZB, s.t.

∏
[pep] = [OK ]

}
i.e. the (full-rank) lattice of class-relations in base B.

Figure: (Z/5Z,+) = Z{1,2}/Λ

�

Rephrased Goal for CPM: CVP in Λ

Find a short path from t ∈ ZB to any lattice point v ∈ Λ.

In general: very hard. But for good Λ, with a good basis, can be easy.

Why should we know anything special about Λ ?
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Example

Figure: Cayley-Graph(Z/5Z, {1, 2}) ' Z{1,2}/Λ
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More than just a lattice

Let G denote the Galois group, it acts on ideals and therefore on classes:

[a]σ = [σ(a)].

Consider the group-ring Z[G ] (formal sums on G ), extend the G -action:

[a]e =
∏
σ∈G

[σ(a)]eσ where e =
∑

eσσ.

I Assume B = {pσ, σ ∈ G}
I G acts on B, and so it acts on ZB by permuting coordinates

I the lattice Λ ⊂ ZB is invariant by the action of G !
i.e. Λ admits G as a group of symmetries

Λ is more than just a lattice: it is a Z[G ]-module
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Stickelberger’s Theorem

In fact, we know much more about Λ !

Definition (The Stickelberger ideal)

The Stickelberger element θ ∈ Q[G ] is defined as

θ =
∑

a∈(Z/mZ)∗

( a

m
mod 1

)
σ−1
a where G 3 σa : ω 7→ ωa.

The Stickelberger ideal is defined as S = Z[G ] ∩ θZ[G ].

Theorem (Stickelberger’s theorem [Washington, 2012, Thm. 6.10])

The Stickelberger ideal annihilates the class group: ∀e ∈ S , a ⊂ K

[ae ] = [OK ].

In particular, if B = {pσ, σ ∈ G}, then S ⊂ Λ.
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Geometry of the Stickelberger ideal

Fact

There exists an explicit (efficiently computable) short basis of S , precisely
it has binary coefficients.

Corollary

Given t ∈ Z[G ], one ca find x ∈ S suh that ‖x − t‖1 ≤ n3/2.

Conclusion: back to CPM

The CPM problem can be solved with approx. factor F = exp(Õ(n3/2)).
QED.
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Extra technicalities

Convenient simplifications/omissions made so far:

B = {pσ, σ ∈ G} generates the class group.

I can allow a few (say polylog) many different ideals and their
conjugates in B

I Numerical computation says such B it should exists [Schoof, 1998]

I Theorem+Heuristic then says we can find such B efficiently

Eliminating minus exponents

I Easy when h+ = 1 : [a−1] = [ā], doable when h+ = poly(n)
h+ is the size of the class group of K+, the maximal totally real subfield of K

I h+ = poly(n) already needed for previous result [Cramer et al., 2016]

I Justified by numerical computations and
heuristics [Buhler et al., 2004, Schoof, 2003]
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Open questions

Obstacle toward attacks Ring-LWE

(i) Restricted to principal ideals.

(ii) The approximation factor in too large to affect Crypto.

(iii) Ring-LWE ≥ Ideal-SVP, but equivalence is not known.
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